RiskAnalytica Science of Applied Risk Management - LifeAtRisk

By: Pantology  09-12-2011
Keywords: Risk Management

The trademark of RiskAnalytica, as well as its original approach in defining and solving problems specific to the population-based management of disease (from the viewpoint of healthcare policy agents), resides in the execution of its interdisciplinary and scientifically derived risk management framework. This framework is called Life at Risk™ .

Recently, the Life at Risk™ framework has been extended to the population-based management of cancer, circulatory diseases and chronic obstructive pulmonary diseases. Each disease application represents a modular concentration within Life at Risk™ framework.

The timeframe of analysis which can be conducted within the Life at Risk™ framework is a key attribute for efficient and effective disease control management and implementation. By mapping the short, medium and long term effects of potential policies on the life and economic factors, the forward looking nature of Life at Risk™ makes the observation of effects (which would otherwise not appear in an analysis within a short timeframe horizon) possible. The results of implementing specific interventions with such a long term orientation analysis and which are typically described in terms of “risk” and “rewards” are then expressed in specific managerial terms such as goals, objectives and tactics. Two main advantages of this process include (1) the underlying quantitative analysis (which are based on scenario simulation methodologies) become transparent for the decision makers and managers to whom the results of analysis are mostly dedicated, and (2) the creation of forward looking disease control management specific language.

Life at Risk™ computes the possible future (forward looking) burden of disease using a simulation platform that operates across four main modules (briefly described below). By incorporating the causal relationships among population, risk factors, epidemiology and economic impacts, the framework is able to generate the expected and possible risk factor exposure, its effects on the future state of cancer, and the associated economic burden.

The platform is divided into the following modules:

Population Module

The population module simulates the expected and possible future states of the population, taking into account historical (both public and expert based information) data regarding population dynamics as well as the birth, mortality, immigration, emigration, and labour force dimensions (participation, unemployment and dependants). Depending on the required level of detail (focus of analysis), some other aspects including ethnicity or the status of mental health (within the population being considered) might be incorporated as well. The determinants of the future states of the population are simulated within a Monte Carlo process in which future states are randomly selected based on their respective transition probabilities (computed using the input data).

Risk Factors (with co-morbidity) Module

The population module along with the risk factor behaviour (prevalence) patterns (exhibited within the population) serves as a constraint on the simulated region of possible future risk prevalence associated with each of the risk factors. The input for this module is based on the population module as well as on the data available on each of the risk factors prevalence and the risk factors co-morbidity data. Within this module, the proposed policy is shown to have an impact on the future state of the risk factors (all of the risk factors considered and their co-morbid dependences). In general, a policy is shown to have an effect on various risk factors such as poor diet, smoking, lack of physical activity and obesity.

Disease Module

Within this module, disease incidence, mortality and associated prevalence are simulated as possible future states (based on the expected risk factor prevalence as well as on actual risk factor prevalence with the associated lag and latency periods). Data regarding disease incidence, mortality, survival statistics, staging, prevalence, co-morbidity and disability is required; existent forecasts regarding the status quo situation and the associated transition probabilities ensure our analysis will provide a detailed picture of the future possibility space of the disease states within the population.

Economic Analysis

Here, the results of the previous modules are used as inputs to estimate the economic burden associated with the presence of disease within the population (and the labour force as a subset). The immediate effects of disease within the population are related to health care costs, disability of the victims to perform work and earn wages, and even premature mortality and its associated economic consequences. Most of the relevant data for this module is provided through diverse National Statistics centers. These include data regarding some macroeconomic variables, inflation, labour force and earnings. In addition, in order to obtain a more accurate evaluation, some disease specific data is needed, such as economic disability weights within each disease stage (this mainly means data on how disease disability will affect a patient’s ability to work, for each disease stage) and the health costs due to each disease disability stage. By simulating the economic costs of various potential policies, an economic price of the presence of disease (within the population) will emerge.

Keywords: Risk Management

Other products and services from Pantology


RiskAnalytica Science of Applied Risk Management - EconomicAnalysis

By using a risk-based approach to cost effectiveness analysis, RiskAnalytica is able to extend its analysis beyond a simple comparison of the incremental cost to incremental effect, to understanding the wider spectrum of the risks and rewards inherent in a management decision.


RiskAnalytica Science of Applied Risk Management - RiskManagement

RiskAnalytica’s Risk Management Division provides the following types of professional services. Quantifying/qualifying risks and rewards across key business processes. Business/project valuation, strategic option analysis. Investment analysis and securities pricing. Identifying and mapping process causality.


RiskAnalytica Science of Applied Risk Management - QuantitativeAnalysis

Decision Tree Analysis - Process maps are used to reflect the conditional, joint and marginal decision dynamics that the decision maker faces, with the incorporation of inherent variability. Data Analysis - Techniques used for analyzing historical or experimental data, allowing determination of the extent that an observed result is connected and/or correlated to input values.


RiskAnalytica Science of Applied Risk Management - Introduction

The execution of RiskAnalytica’s interdisciplinary and scientifically inspired services is supported by a state-of-the-art decision support platform developed by RiskAnalytica called derived business case and performance evaluation framework is called Life at Risk®.


RiskAnalytica Science of Applied Risk Management - Pandemic

RiskAnalytica employs mathematical modeling to interpret and predict the dynamics and control of infectious diseases in order to improve community health. RiskAnalytica supports public health and pharmaceutical industry professionals, policy makers, and infectious disease researchers to. Infectious Disease Modeling and Pandemic Planning Analysis. Interpret and critically-evaluate epidemiological data.