Sampling Equipment - Aerobiology Research Laboratories

By: Aerobiology Research Labs  09-12-2011
Keywords: Research Laboratories

Rotation Impaction Aeroallergen Samplers

Aerobiology Research Laboratories offers three sampler models: GRIPS-99M, GRIPST-2000, and the GRIPST-2009. The GRIPS series sampler was designed strictly for conducting qualitative analyses of the particles in the air, but can be adapted to collect for short periods of time. The GRIPST series samplers can be used for both qualitative and quantitative sampling applications by providing settings to allow collections at varying duty cycles.


The GRIPS-99M, as with its predecessor GRIPS-99, is targeted primarily for agricultural uses and other qualitative sampling applications. Featured components include a rugged, waterproof PVC plastic casing suitable for all types of extreme weather, a rain shield roof to protect samples from wash off, a super-heavy-duty maintenance-free Maxon motor for extended life, and voltage regulator that provides constant rotation speed for any >12VDC power source and allowing for adjustment and calibration. This sampler is equipped with a one and one-half inch sampling head mounting post, designed to reduce air turbulence and thus optimize pollen and fungal spore collection. The post has been C&C machined for balance to reduce motor wear.

Price: $670.00
Input Power: DC 12V to 30V, 300mA
Power Plug: Banana jacks, screw-clamp


The model GRIPST-2000 is a timed collection sampler, designed primarily for aeroallergen research. As with the GRIPS series, these samplers have a waterproof PVC casing suitable for all types of extreme weather, and a heavy duty GLOBE Motor (made in the USA). The sampling head mounting post is one and a half inches long to reduce air turbulence and optimize pollen and spore collection. The post is computer machined for balance and to reduce motor wear. This sampler also incorporates a solid-state relay timer, that allows the sampler to be set to any desired duty cycle -- both the sampling interval and the delay interval can be adjusted independently. The ON-OFF-TEST switch is mounted on the exterior of the sampler for easy access.

Note: The GRIPST-2000 has been succeeded by the GRIPST-2009, and is no longer in production. Please contact us for information on product availability.

Price: $1150.00
Input Power: DC 12V, 300mA
Power Plug: Banana jacks, screw-clamp


The GRIPST-2009 is our flagship sampler. This model is an improved, more robust version of the GRIPST-2000, designed for long-term aeroallergen monitoring projects. The new, more compact sampler casing is constructed from galvanized steel and has an improved hatch design for better long-term weatherproofing and simpler access to the internals. The ON-OFF switch has been upgraded as well. All exterior components are rated NEMA-4 or better. This model includes a super-heavy-duty maintenance-free Maxon motor for extended life, and a voltage regulator that provides stable rotation speed for any >12VDC power source and the ability to adjust and calibrate rotation speed to suit the needs of the monitoring project. As with the GRIPST-2000, this sampler incorporates a solid-state relay timer that allows the sampler to be set to any desired duty cycle, and is equipped with a one and one-half inch sampling head mounting post, C&C machined, to reduce air turbulence and motor wear.

Price: $1500.00
Dimensions: 16cm x 18cm x 16cm (including post)
Weight: 2.5 kg
Input Power: DC 12V to 30V, 300mA
Power Plug: Banana jacks, screw clamp

Each sampler comes with an auto-retracting sampling head for "Type-I" sampling rods, a 12-foot long extension cord with a choice of banana plugs or automotive battery "gator clips", and a package of 100 "Type-I" rods. Samplers are shipped calibrated to 2400RPM, and set to a 10% duty cycle (one minute on, nine minutes off) when applicable.

Rotation Impaction Technology

Rotation impaction samplers have become one of the most widely used mechanical devices for collecting air-borne particles in North America. Developed originally in the 1940's, this technology has been shown to be equally effective at collecting particles with sizes ranging from over 100 microns to as small as 2 microns, and is therefore suitable for collecting pollen grains and fungal spores.

A basic rotation impaction sampler consists of two rods attached to a bar known as a "sampling head", which in turn is attached to a motor. The rods are very thin (less than 2mm wide), and are coated with an embedding material such as silicone grease. As the motor spins, particles in the air impact against the leading surface of the rods and become embedded in the grease. As the rods spin in a circle, sampling occurs independently of wind direction. Wind speed is also independent, as rods travelling with the wind will come into contact with proportionally less air while rods travelling against the wind come into contact with proportionally more air. Standard practice in aerobiology is to sample at speeds of 2400RPM, providing the rods with a travel speed of over 80Km/h and further negating the effect of wind.

To determine the number of particles in the air over the sampling duration, a formula is used to convert the area of the collection surface to a unit of volume over time. In order to support this conversion formula, the number of rotations of the sampling head and the duration of sampling must be known. It is therefore very important that the speed at which the motor spins the sampling head is known and remains consistent. Analysis of samples is performed under a microscope, where particles of interest in a measured sample area are identified and counted. As the conversion formula provides a direct relation between the number of particles on the sample and the number of particles per unit volume of air, the methodology for sample analysis is straight-forward in both theory and practice.

In most instances it is necessary to collect samples over long periods of time. This poses a problem of rod overload: if too many particles are collected on the rods, the sample will be difficult, if not impossible, to accurately analyze. When long collection periods are required, it is recommended that the collection be made intermittently over the sampling period, using a reduced duty cycle. Standard practice in aerobiology is to sample a 24-hour period using a 10% duty cycle (one minute of sampling, nine minutes of rest), thus providing an even sampling of particles over the course of a day without overloading the rods' surface. The GRIPST series samplers from Aerobiology Research Laboratories have integrated timers that provide the capability of sampling with reduced duty cycles.

Aerobiology Research Laboratories supplies sampling heads that are auto-retracting. The rods are contained inside of the sampling head while at rest, and during sampling are extended downwards at 90° to the sampling head by centrifugal force. Retracting the rods while the sampler is at rest protects them from unmetered particle impaction as well as from the elements.

Rotation impaction samplers are non-selective, meaning that they will collect all airborne particles including debris. This should be an important consideration when determining the period and duration of sampling, as well as the duty cycle. These samplers are also capable of sampling for only one duration at a time, at which point the rods must be switched before a second sample can be obtained. Arrays of multiple samplers are often used in combination with a switching power supply when more than one sample is required for a given duration.

Other sampling methods and equipment are being used in this industry, but these are more labour intensive and are costly to buy. These are based on suction sampling and are highly affected by wind speed and direction (Manual for Sampling Airborne Pollen, E.C. Ogden, et al.). Some suction samplers have the ability to shift their collection surface, so that the sample can be sub-sectioned into hourly or daily increments -- an advantage over rotation impaction samplers. However, the equipment is highly susceptible to human error in configuration of the sampler, in changing of the samples, and when analysis and interpreting results. Aerobiology Research Laboratories has researched sampling and analysis methodologies with the objectives of reproducibility and accuracy, and has found that there is no method of analyzing the samples from these suction type machines (Seven day spore traps) that provides as consistent a result as rotation impaction.

Research has been performed over the years comparing different types of samplers and their respective results. As of yet, however, very little research has been published on how representative each of these different types of samplers are in what they collect compared to what is actually in the air. The collections of different samplers with a constant, known amount of particles, of varying sizes. Our research has found, for instance, that the calibration of suction samplers significantly affect the rate at which particular sizes of particles are collected: calibration for larger particles (pollen) results in an oversampling of smaller particles (spores). When sampling in the field, it is often difficult to know how each piece of equipment is maintained and used, and therefore it is very difficult to tell from day to day if the sampler is even functioning as expected. The complexity and reliability of the equipment used, the amount of training provided to the operator, and the methodology and abilities of personnel involved in analysis all affect the validity of the data.

Last Updated: 17 June 2009
The information in this article was current at 06 Dec 2011

Keywords: Research Laboratories

Contact Aerobiology Research Labs


Print this page

Other products and services from Aerobiology Research Labs


Reports for Media - Aerobiology Research Laboratories

One of the principal services provided by Aerobiology Research Laboratories is the provision of reports that educate and inform the public on the status of various outdoor allergies. Although we feel that this information is not enough to properly inform the public about outdoor allergens, we continue to provide this report due to the demand for it.


Research Tools and Services - Aerobiology Research Laboratories

Aerobiology Research Laboratories is currently exploring opportunities involving the release of our data analysis tools as a software toolkit, allowing others to have access to the cutting edge machine learning and data visualization software that has been supporting our internal research activities.


Data Products - Aerobiology Research Laboratories

Aerobiology Research Laboratories is the only organization that monitors outdoor pollen and spore levels across Canada on an ongoing basis. We have monitoring stations in more than 30 cities, and daily aeroallergen levels going back more than 10 years in most locations. Sites marked with a are not part of our forecasting contract with The Weather Network / MétéoMédia.


Supplies & Accessories - Aerobiology Research Laboratories

Our retracting sampling heads are made of corrosion-resistant materials, and spring-loaded to extend the sampling rods under centrifugal force during sampling and retract them for protection while the sampler is at rest. Rods are available ungreased in packages of 100, or pre-greased in larger quantities.(Note - pre-greased rods require the purchase or supply of a storage tray for shipping.


Reference Slides - Aerobiology Research Laboratories

Gambel's oak / Arizona oak / shin oak. Black alder / European alder.


Sample Analysis (Counting) Services - Aerobiology Research Laboratories

We provide sample analysis services for organizations such as allergists, pharmaceutical companies, hospitals, and other institutions that collect outdoor air samples using rotation impaction equipment. Sampling Equipment supplied for collecting samples. Seasonal count - Trees Any 10 from the listing. We specialize in analysis of Type-I rods. Seasonal count - Ragweed & other Weeds. Sample Analysis - Prices per Sample.